6.3 Using the Fundamental Theorem to Find Definite Integrals

Recall the Fundamental Theorem of Calculus (abbreviated by FTC): If $F^{\prime}(x)=$ $f(x)$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$. In particular, we have

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Once we have found an antiderivative of $f(x)$, computing definite integrals is easy by the Fundamental Theorem of Calculus.

Example 6.3.1

Compute $\int_{1}^{2} 3 x^{2} d x$.

Solution.

Since $F(x)=x^{3}$ is an antiderivative of $f(x)=3 x^{2}$, then by FTC

$$
\int_{1}^{2} 3 x^{2} d x=\left.x^{3}\right|_{1} ^{2}=2^{3}-1^{3}=7
$$

Example 6.3.2

Write a definite integral to represent the area under the graph of $f(t)=e^{0.5 t}$ between $t=0$ and $t=4$. Use the Fundamental Theorem of Calculus to calculate the area.

Solution.

An antiderivative of $f(t)$ is $2 e^{0.5 t}$. Thus,

$$
\text { Area }=\int_{0}^{4} e^{0.5 t} d t=\left.2 e^{0.5 t}\right|_{0} ^{4}=2 e^{2}-2 \approx 12.778
$$

Next, we discuss the evaluation of a definite integral using the technique of substitution. From the Chain Rule of differnetiation, we have that $f(g(x))$ is an antiderivative of the function $f^{\prime}(g(x)) g^{\prime}(x)$. Applying the Fundamental Theorem of Calculus we can write

$$
\int_{a}^{b} f^{\prime}(g(x)) g^{\prime}(x) d x=\left.f(g(x))\right|_{a} ^{b}=f(g(b))-f(g(a))
$$

If we let $u=g(x)$ then the previous formula reduces to

$$
\int_{a}^{b} f^{\prime}(g(x)) g^{\prime}(x) d x=f(g(b))-f(g(a))=\int_{g(a)}^{g(b)} f^{\prime}(u) d u
$$

Warning: When evaluating definite integrals, there is no constant of integration in the final answer.

Example 6.3.3

Compute $\int_{0}^{2} x e^{x^{2}} d x$.

Solution.

Let $u(x)=x^{2}$. Then $d u=2 x d x, u(0)=0$, and $u(2)=4$. Thus,

$$
\int_{0}^{2} x e^{x^{2}} d x=\frac{1}{2} \int_{0}^{4} e^{u} d u=\left.\frac{e^{u}}{2}\right|_{0} ^{4}=\frac{1}{2}\left(e^{4}-1\right)
$$

